Bridge Cohomology

Jon Belcher
University of Colorado Boulder

Special Session on Noncommutative Geometry and Fundamental Applications
AMS Western Sectional 2018

Preliminaries

Complexes

For any \mathbb{k}_{k}-algebra A we have the Hochschild and Bar cochain complexes $C_{\text {bar }}^{\bullet}(A)$ and $C^{\bullet}(A)$, where $C_{(\text {bar })}^{n}(A)$ is the module of $n+1$ multilinear functionals on A, and the boundary maps are respectively given by

$$
b^{\prime} \varphi\left(a_{0}, \ldots, a_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i} \varphi\left(a_{0}, \ldots, a_{i} a_{i+1}, \ldots, a_{n+1}\right)
$$

and

$$
b \varphi\left(a_{0}, \ldots, a_{n+1}\right)=b^{\prime} \varphi\left(a_{0}, \ldots, a_{n+1}\right)+(-1)^{n+1} \varphi\left(a_{n+1} a_{0}, \ldots, a_{n}\right)
$$

Preliminaries

Cohomologies

For any algebra A (not necessarily unital) the bar cohomology of A is the cohomology of the complex $C_{\text {bar }}^{\bullet}(A)$

$$
H B^{\bullet}(A):=H^{\bullet}\left(C_{\mathrm{bar}}^{\bullet}(A)\right)
$$

When A is a unital algebra, the Hochschild cohomology of A is defined as the cohomology of the complex $C^{\bullet}(A)$

$$
H H^{\bullet}(A):=H^{\bullet}\left(C^{\bullet}(A)\right)
$$

Preliminaries

Normalized and Reduced Complexes

The Reduced Hochschild cochain complex is composed of the modules

$$
C_{\mathrm{red}}^{n}(A)=\left\{\varphi \mid \varphi\left(a_{0}, \ldots, a_{n}\right)=0 \text { if } a_{i}=1,1 \leq i \leq n\right\}
$$

for $n \geq 1$, and

$$
C_{\mathrm{red}}^{0}(A)=\{\varphi \mid \varphi(1)=0\}
$$

The reduced Hochschild cohomology is then

$$
\overrightarrow{H H^{\bullet}}(A):=H^{\bullet}\left(C^{\bullet}(A)_{\mathrm{red}}\right)
$$

For a non-unital algebra $A, H H^{n}(A)=H^{n}\left(C^{\bullet}\left(A_{+}\right)_{\text {red }}\right)$.

Preliminaries

Maps

There exist chain maps

$$
\begin{gathered}
(1-\lambda): C^{\bullet}(A) \rightarrow C_{\mathrm{bar}}^{\bullet}(A) \\
Q: C_{\mathrm{bar}}^{\bullet}(A) \rightarrow C^{\bullet}(A)
\end{gathered}
$$

Where

$$
\lambda \varphi\left(a_{0}, \ldots, a_{n}\right)=(-1)^{n} \varphi\left(a_{n}, a_{0}, \ldots, a_{n-1}\right)
$$

and

$$
Q=\sum_{i=0}^{n} \lambda^{i}
$$

When \mathbb{k} contains \mathbb{Q} the sequence is exact

$$
\ldots \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} \ldots
$$

Cyclic Cohomology

Connes Complex

Definition

The Connes complex $C_{\lambda}(A)$ is given as the kernel of $1-\lambda$:

$$
0 \rightarrow C_{\lambda}(A) \rightarrow C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A)
$$

The "Cyclic" Cohomology of A is then $\left.H_{\lambda}^{\bullet}(A):=H^{\bullet}\left(C_{\lambda}(A)\right)\right)$.

Cyclic Cohomology

Definition

For any algebra A the cyclic cobicomplex $C C^{\bullet \bullet}(A)$ is the bicomplex

The $n^{\text {th }}$ cyclic cohomology of A is then

$$
H C^{n}(A):=H^{n}\left(\operatorname{Tot} C C^{\bullet \bullet}(A)\right)
$$

Theorems and Examples

Proposition (Connes)

Let τ be an $n+1$ linear functional on A. Then the following are equivalent:
(1) There is an n-dimensional cycle $\left(\Omega, d, \int\right)$ and a homomorphism $\rho: A \rightarrow \Omega^{0}$ such that

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\int \rho\left(a_{0}\right) d \rho\left(a_{1}\right) \ldots d \rho\left(a_{n}\right)
$$

(2) There exists a closed graded trace $\hat{\tau}$ of dimension n on $\Omega^{*}(A)$ such that

$$
\tau\left(a_{0}, \ldots, a_{n}\right)=\hat{\tau}\left(a_{0} d a_{1} \ldots d a_{n}\right)
$$

(3) $b \tau=0$ and $(1-\lambda) \tau=0$. That is $\tau \in Z_{\lambda}^{n}(A)$.

Theorems and Examples

There exist pairings $\left\langle K_{0}(A), H C^{e}(A)\right\rangle$ and $\left\langle K_{1}(A), H C^{\circ}(A)\right\rangle$ between the first and second K-theory groups of A and the even and odd cyclic cohomological groups of A.

An open question is then, how can we apply these results to manifolds with boundary?

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1$) \Longrightarrow 3$):
$\tau\left(a_{0}, \ldots, a_{n}\right)=\int a_{0} d a_{1} \ldots d a_{n}$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):

$$
\begin{aligned}
\tau\left(a_{0}, \ldots, a_{n}\right) & =\int a_{0} d a_{1} \ldots d a_{n} \\
& =(-1)^{n-1} \int d a_{n} a_{0} d a_{1} \ldots d a_{n-1}
\end{aligned}
$$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1$) \Longrightarrow 3$):

$$
\left.\left.\begin{array}{rl}
\tau\left(a_{0}, \ldots,\right. & \left.a_{n}\right)
\end{array}\right)=\int a_{0} d a_{1} \ldots d a_{n}\right)
$$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):

$$
\begin{aligned}
\tau\left(a_{0}, \ldots, a_{n}\right) & =\int a_{0} d a_{1} \ldots d a_{n} \\
& =(-1)^{n-1} \int d a_{n} a_{0} d a_{1} \ldots d a_{n-1} \\
= & (-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+(-1)^{n} \int a_{n} d a_{0} d a_{1} \ldots d a_{n-1} \\
& =(-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+\lambda \tau\left(a_{0}, \ldots, a_{n}\right)
\end{aligned}
$$

Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) $\Longrightarrow 3$):

$$
\begin{aligned}
\tau\left(a_{0}, \ldots, a_{n}\right) & =\int a_{0} d a_{1} \ldots d a_{n} \\
= & (-1)^{n-1} \int d a_{n} a_{0} d a_{1} \ldots d a_{n-1} \\
= & (-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+(-1)^{n} \int a_{n} d a_{0} d a_{1} \ldots d a_{n-1} \\
& =(-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1}+\lambda \tau\left(a_{0}, \ldots, a_{n}\right)
\end{aligned}
$$

Hence

$$
(1-\lambda) \tau\left(a_{0}, \ldots, a_{n}\right)=(-1)^{n-1} \int d\left(a_{n} a_{0}\right) d a_{1} \ldots d a_{n-1} \sim \int_{\partial M} \alpha
$$

Theorems and Examples

For a manifold M with Boundary ∂M, we now have two algebras $A=C^{\infty}(M)$ and $B=C^{\infty}(\partial M)$ (or $\mathscr{E}^{\infty}(\partial M)$) along with a surjection $A \xrightarrow{\sigma} B$ between them, and we are looking for functionals $\varphi \in C^{\bullet}(A)$ such that $(1-\lambda) \varphi \in \sigma^{*} C^{\bullet}(B)$

Bridge Cohomology

(Originally "Restricted Cyclic Cohomology")

Definition

For a surjective map of unital algebras $A \xrightarrow{\sigma} B$, the bridge complex $R(\sigma)$ can be defined as the pullback in the following diagram:

$$
\begin{gathered}
R^{\bullet}(\sigma) \longrightarrow C^{\bullet}(A) \\
C_{\text {bar }}^{\bullet}(B) \xrightarrow{\sigma^{*}} C_{\text {bar }}^{\bullet}(A)
\end{gathered}
$$

$$
R^{n}(\sigma)=\left\{\left.\binom{\varphi}{\psi} \in C^{n}(A) \times C_{\mathrm{bar}}^{n}(B) \right\rvert\,(1-\lambda) \varphi=\sigma^{*} \psi\right\},\left(\begin{array}{cc}
b & 0 \\
0 & b^{\prime}
\end{array}\right)
$$

Bridge Cohomology

Of special note:

$$
\begin{aligned}
R^{\bullet}\left(\operatorname{id}_{A}\right) & =\left\{\varphi \in C^{\bullet}(A) \mid(1-\lambda) \varphi=\mathrm{id}_{A}^{*} \psi \text { for some } \psi \in C^{\bullet}(A)\right\} \\
& =C^{\bullet}(A)
\end{aligned}
$$

And for the zero map we have the short exact sequence $A \rightarrow A \xrightarrow{0_{A}} 0$, and bridge cohomology

$$
R^{\bullet}\left(0_{A}\right)=\left\{\varphi \in C^{\bullet}(A) \mid(1-\lambda) \varphi=0\right\}=C_{\lambda}^{\bullet}(A)
$$

Bridge Cohomology

Non-unital Constructions

Definition

Given any \mathbb{k}-algebras A and B (not necessarily unital) and a surjective algebra homomorphism $\sigma: A \rightarrow B$, let $\sigma_{+}: A_{+} \rightarrow B_{+}$. We define the $n^{\text {th }}$ bridge cohomology module of σ as:

$$
H R^{n}(\sigma):=\operatorname{ker}\left(H R^{n}\left(\sigma_{+}\right) \xrightarrow{\iota^{*}} H R^{n}\left(\operatorname{id}_{\mathfrak{k}}\right)\right) .
$$

Bridge Cohomology

Normalized and Reduced Complexes

Proposition-Definition

$R(\sigma)_{\text {red }}$ is the pullback of the corresponding normalized complexes:

$$
\stackrel{R^{\bullet}(\sigma)_{\mathrm{red}}}{\stackrel{\downarrow}{\square}} C^{\bullet}(A)_{\mathrm{red}}
$$

Theorem

For a non-unital surjection $\sigma: A \rightarrow B, H R^{n}(\sigma)=H^{n}\left(R\left(\sigma_{+}\right)_{\mathrm{red}}\right)$.

Bridge Cohomology

Cyclic bicomplexes

Let $\sigma: A \rightarrow A / I$ be a surjective unital algebra homomorphism, where $I \subset A$ is an ideal. Then the relative Hochschild complex $C(A, I)$ is defined as the cokernel

$$
0 \rightarrow C(A / I) \rightarrow C(A) \rightarrow C(A, I) \rightarrow 0
$$

With cohomology $H H(A, I)$.

Bridge Cohomology

Cyclic bicomplexes

Definition

Let A be a unital algebra and $0 \rightarrow I \rightarrow A \xrightarrow{\sigma} A / I \rightarrow 0$ be a short exact sequence of algebras. Define the bridge bicomplex of $\sigma, R R(\sigma)$, as the bicomplex with the following columns

$$
C(A) \xrightarrow{q(1-\lambda)} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} C(A, I) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} \ldots
$$

With cohomology given by $H R^{n}(\sigma):=H^{n}(\operatorname{Tot} R R(\sigma))$ called the bridge cohomology of σ.

Proposition

When \mathbb{k} contains \mathbb{Q}, the total complex of $R R(\sigma)$ is quasi-isomorphic to the bridge complex, $\operatorname{Tot} R R(\sigma) \stackrel{q}{\cong} R(\sigma)$.

Lemma

For an augmented morphism $\sigma_{+}: A_{+} \rightarrow A_{+} / I$, $H^{n}(\sigma)=H^{n}(\operatorname{Tot} \operatorname{RRB}(\sigma))$, where $\operatorname{RRB}(\sigma)$ is the following tricomplex

Bridge Cohomology

Gysin-Connes

Theorem (B.,Lesch, Moscovici, Pflaum)

There exists cohomological long exact sequences

$$
\begin{aligned}
& \cdots \rightarrow H C^{n}(A, I) \xrightarrow{\widetilde{S}} H R^{n+2}(\sigma) \xrightarrow{\prime} H H^{n+2}(A) \xrightarrow{\widetilde{B}} H C^{n+1}(A, I) \rightarrow \ldots \\
& \text { and } \\
& \cdots \rightarrow H_{\lambda}^{n}(A) \xrightarrow{\prime} H R^{n}(\sigma) \xrightarrow{B} H_{\lambda}^{n-1}(A / I) \xrightarrow{\sigma^{*} \circ S} H_{\lambda}^{n+1}(A / I) \rightarrow \ldots
\end{aligned}
$$

Bridge Cohomology

Relative Bridge Cohomology

Given an exact sequence

$$
0 \rightarrow \sigma \xrightarrow{\left(f_{1}, f_{2}\right)} \tau \xrightarrow{\left(g_{1}, g_{2}\right)} \tau / \sigma \rightarrow 0
$$

we can define the relative bridge cocomplex, $R^{\bullet}(\tau, \sigma)$, as the cokernel

$$
0 \rightarrow R^{\bullet}(\tau / \sigma) \rightarrow R^{\bullet}(\tau) \rightarrow R^{\bullet}(\tau, \sigma) \rightarrow 0
$$

Theorem (B.)

(Excision) Let $0 \rightarrow \rho \rightarrow \sigma \rightarrow \tau \rightarrow 0$ be a copure short exact sequence in the category $\mathcal{S}_{\mathfrak{k}}$, with associated nine diagram

Then the map $R(\sigma, \rho) \rightarrow R(\rho)$ is a quasi-isomorphism if and only if K and $K / K \cap I$ are coH -unital.

Bridge Cohomology

Future Projects and Applications

Research Goal

Correlate bridge cohomology and de Rham Homology on manifolds with boundary: (L.,M.,P.) for M compact and

$$
\begin{gathered}
\mathscr{J}^{\infty}(\partial M ; M) \rightarrow C^{\infty}(M) \stackrel{\sigma}{\rightarrow} \mathscr{E}^{\infty}(\partial M) \\
H R^{k}(\sigma) \cong B^{-1}\left(\mathscr{D}_{k-1}^{\prime}(M ; \partial M)\right) \oplus H_{k-2}^{d R}(M ; \partial M) \oplus H_{k-4}^{d R}(M ; \partial M) \oplus \ldots
\end{gathered}
$$

Extend the pairings $\left\langle K_{0}(A), H C^{e}(A)\right\rangle$ and $\left\langle K_{1}(A), H C^{\circ}(A)\right\rangle$ from Connes, to manifolds with boundaries.

Thank You!

