Bridge Cohomology

Jon Belcher

University of Colorado Boulder

Special Session on Noncommutative Geometry and Fundamental Applications AMS Western Sectional 2018

B ▶ < B ▶

For any k-algebra A we have the Hochschild and Bar cochain complexes $C^{\bullet}_{\text{bar}}(A)$ and $C^{\bullet}(A)$, where $C^{n}_{(\text{bar})}(A)$ is the module of n + 1 multilinear functionals on A, and the boundary maps are respectively given by

$$b'\varphi(a_0,...,a_{n+1}) = \sum_{i=0}^n (-1)^i \varphi(a_0,...,a_i a_{i+1},...,a_{n+1})$$

and

$$b\varphi(a_0,...,a_{n+1}) = b'\varphi(a_0,...,a_{n+1}) + (-1)^{n+1}\varphi(a_{n+1}a_0,...,a_n)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

For any algebra A (not necessarily unital) the bar cohomology of A is the cohomology of the complex $C^{\bullet}_{\text{bar}}(A)$

$$HB^{\bullet}(A) := H^{\bullet}(C^{\bullet}_{\mathrm{bar}}(A))$$

When A is a unital algebra, the Hochschild cohomology of A is defined as the cohomology of the complex $C^{\bullet}(A)$

$$HH^{\bullet}(A) := H^{\bullet}(C^{\bullet}(A))$$

イロト イ団ト イヨト イヨト 三日

The Reduced Hochschild cochain complex is composed of the modules

$$C_{\mathrm{red}}^n(A) = \{\varphi \,|\, \varphi(a_0,...,a_n) = 0 \text{ if } a_i = 1, \, 1 \leq i \leq n\}$$

for $n \geq 1$, and

$$C^0_{\mathrm{red}}(A) = \{ \varphi \, | \, \varphi(1) = 0 \}$$

The reduced Hochschild cohomology is then

$$\overline{HH}^{\bullet}(A) := H^{\bullet}(C^{\bullet}(A)_{\mathrm{red}})$$

For a non-unital algebra A, $HH^n(A) = H^n(C^{\bullet}(A_+)_{red})$.

イロン イ団と イヨン トラン

Preliminaries

Maps

There exist chain maps

$$egin{aligned} (1-\lambda): \ \mathcal{C}^ullet(A) o \mathcal{C}^ullet_{\mathrm{bar}}(A) \ Q: \ \mathcal{C}^ullet_{\mathrm{bar}}(A) o \mathcal{C}^ullet(A) \end{aligned}$$

Where

$$\lambda\varphi(a_0,...,a_n)=(-1)^n\varphi(a_n,a_0,...,a_{n-1})$$

and

$$Q = \sum_{i=0}^n \lambda^i$$

When \Bbbk contains $\mathbb Q$ the sequence is exact

$$... \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A) \xrightarrow{Q} ...$$

æ

イロト イポト イヨト イヨト

Definition

The Connes complex $C_{\lambda}(A)$ is given as the kernel of $1 - \lambda$:

$$0 \to C_{\lambda}(A) \to C(A) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A)$$

The "Cyclic" Cohomology of A is then $H^{\bullet}_{\lambda}(A) := H^{\bullet}(C_{\lambda}(A))$.

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Cyclic Cohomology

Definition

For any algebra A the cyclic cobicomplex $CC^{\bullet\bullet}(A)$ is the bicomplex

The n^{th} cyclic cohomology of A is then

$$HC^n(A) := H^n(\operatorname{Tot} CC^{\bullet \bullet}(A))$$

Proposition (Connes)

Let τ be an n + 1 linear functional on A. Then the following are equivalent:

• There is an n-dimensional cycle (Ω, d, \int) and a homomorphism $\rho : A \to \Omega^0$ such that

$$\tau(a_0,...,a_n) = \int \rho(a_0) d\rho(a_1)...d\rho(a_n)$$

Output: There exists a closed graded trace τ̂ of dimension n on Ω*(A) such that

$$\tau(a_0,...,a_n) = \hat{\tau}(a_0 da_1...da_n)$$

• $b\tau = 0$ and $(1 - \lambda)\tau = 0$. That is $\tau \in Z_{\lambda}^{n}(A)$.

There exist pairings $\langle K_0(A), HC^e(A) \rangle$ and $\langle K_1(A), HC^o(A) \rangle$ between the first and second *K*-theory groups of *A* and the even and odd cyclic cohomological groups of *A*.

An open question is then, how can we apply these results to manifolds with boundary?

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Specifically, if we look at the proof of the previous proposition $1) \implies 3$:

$$\tau(a_0,...,a_n) = \int a_0 da_1...da_n$$

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

$$au(a_0,...,a_n)=\int a_0da_1...da_n
onumber \ =(-1)^{n-1}\int da_na_0da_1...da_{n-1}$$

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

$$\begin{aligned} \tau(a_0,...,a_n) &= \int a_0 da_1...da_n \\ &= (-1)^{n-1} \int da_n a_0 da_1...da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1...da_{n-1} + (-1)^n \int a_n da_0 da_1...da_{n-1} \end{aligned}$$

Specifically, if we look at the proof of the previous proposition $1) \implies 3$:

$$\begin{aligned} \tau(a_0, ..., a_n) &= \int a_0 da_1 ... da_n \\ &= (-1)^{n-1} \int da_n a_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + (-1)^n \int a_n da_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + \lambda \tau(a_0, ..., a_n) \end{aligned}$$

Specifically, if we look at the proof of the previous proposition 1) \implies 3):

$$\begin{aligned} \tau(a_0, ..., a_n) &= \int a_0 da_1 ... da_n \\ &= (-1)^{n-1} \int da_n a_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + (-1)^n \int a_n da_0 da_1 ... da_{n-1} \\ &= (-1)^{n-1} \int d(a_n a_0) da_1 ... da_{n-1} + \lambda \tau(a_0, ..., a_n) \end{aligned}$$

Hence

$$(1-\lambda) au(a_0,...,a_n)=(-1)^{n-1}\int d(a_na_0)da_1...da_{n-1}\sim\int_{\partial M}lpha$$

イロト イ団ト イヨト イヨト 三日

For a manifold M with Boundary ∂M , we now have two algebras $A = C^{\infty}(M)$ and $B = C^{\infty}(\partial M)$ (or $\mathscr{E}^{\infty}(\partial M)$) along with a surjection $A \xrightarrow{\sigma} B$ between them, and we are looking for functionals $\varphi \in C^{\bullet}(A)$ such that $(1 - \lambda)\varphi \in \sigma^*C^{\bullet}(B)$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Definition

For a surjective map of unital algebras $A \xrightarrow{\sigma} B$, the bridge complex $R(\sigma)$ can be defined as the pullback in the following diagram:

$${\mathcal R}^n(\sigma) = \left\{ \begin{pmatrix} arphi \\ \psi \end{pmatrix} \in {\mathcal C}^n({\mathcal A}) imes {\mathcal C}^n_{\mathrm{bar}}({\mathcal B}) \, \Big| \, (1-\lambda) arphi = \sigma^* \psi
ight\}, egin{pmatrix} b & 0 \ 0 & b' \end{pmatrix}$$

・ロト ・部ト ・ヨト ・ヨト - ヨ

Of special note:

$$\begin{split} R^{\bullet}(\mathrm{id}_{\mathcal{A}}) &= \{ \varphi \in C^{\bullet}(\mathcal{A}) \,|\, (1-\lambda)\varphi = \mathrm{id}_{\mathcal{A}}^{*}\psi \text{ for some } \psi \in C^{\bullet}(\mathcal{A}) \} \\ &= C^{\bullet}(\mathcal{A}) \end{split}$$

And for the zero map we have the short exact sequence $A \to A \xrightarrow{0_A} 0$, and bridge cohomology

$$R^{\bullet}(0_{\mathcal{A}}) = \{\varphi \in C^{\bullet}(\mathcal{A}) \,|\, (1-\lambda)\varphi = 0\} = C^{\bullet}_{\lambda}(\mathcal{A}).$$

イロト イ団ト イヨト イヨト 三日

Definition

Given any k-algebras A and B (not necessarily unital) and a surjective algebra homomorphism $\sigma: A \to B$, let $\sigma_+: A_+ \to B_+$. We define the n^{th} bridge cohomology module of σ as:

$$HR^n(\sigma) := \ker \left(HR^n(\sigma_+) \xrightarrow{\iota^*} HR^n(\mathrm{id}_{\Bbbk}) \right).$$

Proposition-Definition

 $R(\sigma)_{\rm red}$ is the pullback of the corresponding normalized complexes:

Theorem

For a non-unital surjection $\sigma : A \to B$, $HR^n(\sigma) = H^n(R(\sigma_+)_{red})$.

《曰》《聞》《臣》《臣》 三臣

Let $\sigma : A \to A/I$ be a surjective unital algebra homomorphism, where $I \subset A$ is an ideal. Then the relative Hochschild complex C(A, I) is defined as the cokernel

$$0 \rightarrow C(A/I) \rightarrow C(A) \rightarrow C(A, I) \rightarrow 0.$$

With cohomology HH(A, I).

Definition

Let A be a unital algebra and $0 \rightarrow I \rightarrow A \xrightarrow{\sigma} A/I \rightarrow 0$ be a short exact sequence of algebras. Define the *bridge bicomplex of* σ , $RR(\sigma)$, as the bicomplex with the following columns

$$C(A) \xrightarrow{q(1-\lambda)} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} C(A, I) \xrightarrow{1-\lambda} C_{\mathrm{bar}}(A, I) \xrightarrow{Q} \dots$$

With cohomology given by $HR^n(\sigma) := H^n(\text{Tot } RR(\sigma))$ called the *bridge* cohomology of σ .

Proposition

When \Bbbk contains \mathbb{Q} , the total complex of $RR(\sigma)$ is quasi-isomorphic to the bridge complex, $\operatorname{Tot} RR(\sigma) \stackrel{q}{\cong} R(\sigma)$.

(日) (周) (三) (三)

Lemma

For an augmented morphism $\sigma_+ : A_+ \to A_+/I$, $HR^n(\sigma) = H^n(\text{Tot } RRB(\sigma))$, where $RRB(\sigma)$ is the following tricomplex

Theorem (B.,Lesch, Moscovici, Pflaum)

There exists cohomological long exact sequences

$$\cdots \to HC^{n}(A, I) \xrightarrow{\widetilde{S}} HR^{n+2}(\sigma) \xrightarrow{I} HH^{n+2}(A) \xrightarrow{\widetilde{B}} HC^{n+1}(A, I) \to \dots$$

and
$$\cdots \to H^{n}_{\lambda}(A) \xrightarrow{I} HR^{n}(\sigma) \xrightarrow{B} H^{n-1}_{\lambda}(A/I) \xrightarrow{\sigma^{*} \circ S} H^{n+1}_{\lambda}(A/I) \to \dots$$

Given an exact sequence

$$0 \to \sigma \xrightarrow{(f_1, f_2)} \tau \xrightarrow{(g_1, g_2)} \tau / \sigma \to 0$$

we can define the relative bridge cocomplex, $R^{\bullet}(\tau, \sigma)$, as the cokernel

$$0 \to R^{\bullet}(\tau/\sigma) \to R^{\bullet}(\tau) \to R^{\bullet}(\tau,\sigma) \to 0$$

イロト イ団ト イヨト イヨト 三日

Theorem (B.)

(Excision) Let $0 \rightarrow \rho \rightarrow \sigma \rightarrow \tau \rightarrow 0$ be a copure short exact sequence in the category S_{\Bbbk} , with associated nine diagram

Then the map $R(\sigma, \rho) \rightarrow R(\rho)$ is a quasi-isomorphism if and only if K and $K/K \cap I$ are coH-unital.

Research Goal

Correlate bridge cohomology and de Rham Homology on manifolds with boundary: (L.,M.,P.) for M compact and

$$\mathscr{J}^{\infty}(\partial M; M) \to C^{\infty}(M) \xrightarrow{\sigma} \mathscr{E}^{\infty}(\partial M),$$

 $HR^{k}(\sigma) \cong B^{-1}(\mathscr{D}'_{k-1}(M;\partial M)) \oplus H^{dR}_{k-2}(M;\partial M) \oplus H^{dR}_{k-4}(M;\partial M) \oplus \dots$

Extend the pairings $\langle K_0(A), HC^e(A) \rangle$ and $\langle K_1(A), HC^o(A) \rangle$ from Connes, to manifolds with boundaries.

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Thank You!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣