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Preliminaries
Complexes

For any k-algebra A we have the Hochschild and Bar cochain complexes
C •bar(A) and C •(A), where Cn

(bar)(A) is the module of n + 1 multilinear
functionals on A, and the boundary maps are respectively given by

b′ϕ(a0, ..., an+1) =
n∑

i=0

(−1)iϕ(a0, ..., aiai+1, ..., an+1)

and

bϕ(a0, ..., an+1) = b′ϕ(a0, ..., an+1) + (−1)n+1ϕ(an+1a0, ..., an)
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Preliminaries
Cohomologies

For any algebra A (not necessarily unital) the bar cohomology of A is the
cohomology of the complex C •bar(A)

HB•(A) := H•(C •bar(A))

When A is a unital algebra, the Hochschild cohomology of A is defined as
the cohomology of the complex C •(A)

HH•(A) := H•(C •(A))
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Preliminaries
Normalized and Reduced Complexes

The Reduced Hochschild cochain complex is composed of the modules

Cn
red(A) = {ϕ |ϕ(a0, ..., an) = 0 if ai = 1, 1 ≤ i ≤ n}

for n ≥ 1, and
C 0
red(A) = {ϕ |ϕ(1) = 0}

The reduced Hochschild cohomology is then

HH
•
(A) := H•(C •(A)red)

For a non-unital algebra A, HHn(A) = Hn(C •(A+)red).
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Preliminaries
Maps

There exist chain maps

(1− λ) : C •(A)→ C •bar(A)

Q : C •bar(A)→ C •(A)

Where
λϕ(a0, ..., an) = (−1)nϕ(an, a0, ..., an−1)

and

Q =
n∑

i=0

λi

When k contains Q the sequence is exact

...
Q−→ C (A)

1−λ−−→ Cbar(A)
Q−→ C (A)

1−λ−−→ Cbar(A)
Q−→ ...
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Cyclic Cohomology
Connes Complex

Definition

The Connes complex Cλ(A) is given as the kernel of 1− λ :

0→ Cλ(A)→ C (A)
1−λ−−→ Cbar(A)

The “Cyclic” Cohomology of A is then H•λ(A) := H•(Cλ(A))).
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Cyclic Cohomology

Definition

For any algebra A the cyclic cobicomplex CC ••(A) is the bicomplex

C0(A) C0
bar(A) C0(A) C0

bar(A)

C1(A) C1
bar(A) C1(A) C1

bar(A)

C2(A) C2
bar(A) C2(A) C2

bar(A)

1− λ

b

1− λ

b

1− λ
b

Q

−b′

Q

−b′

Q
−b′

1− λ

b

1− λ

b

1− λ
b

Q

−b′

Q

−b′

Q
−b′

The nth cyclic cohomology of A is then

HCn(A) := Hn(TotCC ••(A))
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Theorems and Examples

Proposition (Connes)

Let τ be an n + 1 linear functional on A. Then the following are
equivalent:

1 There is an n-dimensional cycle (Ω, d ,
∫

) and a homomorphism
ρ : A→ Ω0 such that

τ(a0, ..., an) =

∫
ρ(a0)dρ(a1)...dρ(an)

2 There exists a closed graded trace τ̂ of dimension n on Ω∗(A) such
that

τ(a0, ..., an) = τ̂(a0da1...dan)

3 bτ = 0 and (1− λ)τ = 0. That is τ ∈ Zn
λ (A).
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Theorems and Examples

There exist pairings 〈K0(A),HC e(A)〉 and 〈K1(A),HC o(A)〉 between the
first and second K -theory groups of A and the even and odd cyclic
cohomological groups of A.

An open question is then, how can we apply these results to manifolds
with boundary?
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Theorems and Examples

Specifically, if we look at the proof of the previous proposition 1) =⇒ 3):

τ(a0, ..., an) =

∫
a0da1...dan

= (−1)n−1
∫

dana0da1...dan−1

= (−1)n−1
∫

d(ana0)da1...dan−1 + (−1)n
∫

anda0da1...dan−1

= (−1)n−1
∫

d(ana0)da1...dan−1 + λτ(a0, ..., an)

Hence

(1− λ)τ(a0, ..., an) = (−1)n−1
∫

d(ana0)da1...dan−1 ∼
∫
∂M

α
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Theorems and Examples

For a manifold M with Boundary ∂M, we now have two algebras
A = C∞(M) and B = C∞(∂M) (or E∞(∂M)) along with a surjection
A

σ−→ B between them, and we are looking for functionals ϕ ∈ C •(A) such
that (1− λ)ϕ ∈ σ∗C •(B)
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Bridge Cohomology
(Originally “Restricted Cyclic Cohomology”)

Definition

For a surjective map of unital algebras A
σ−→ B, the bridge complex R(σ)

can be defined as the pullback in the following diagram:

C •bar(B) C •bar(A)

R•(σ) C •(A)

σ∗

1− λ

Rn(σ) =

{(
ϕ
ψ

)
∈ Cn(A)× Cn

bar(B)
∣∣∣ (1− λ)ϕ = σ∗ψ

}
,

(
b 0
0 b′

)
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Bridge Cohomology

Of special note:

R•(idA) = {ϕ ∈ C •(A) | (1− λ)ϕ = id∗Aψ for some ψ ∈ C •(A)}
= C •(A)

And for the zero map we have the short exact sequence A→ A
0A−→ 0, and

bridge cohomology

R•(0A) = {ϕ ∈ C •(A) | (1− λ)ϕ = 0} = C •λ(A).
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Bridge Cohomology
Non-unital Constructions

Definition

Given any k-algebras A and B (not necessarily unital) and a surjective
algebra homomorphism σ : A→ B, let σ+ : A+ → B+. We define the nth

bridge cohomology module of σ as:

HRn(σ) := ker
(
HRn(σ+)

ι∗−→ HRn(idk)
)
.
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Bridge Cohomology
Normalized and Reduced Complexes

Proposition-Definition

R(σ)red is the pullback of the corresponding normalized complexes:

C •bar(B)red C •bar(A)red

R•(σ)red C •(A)red

σ∗

1− λ

Theorem

For a non-unital surjection σ : A→ B, HRn(σ) = Hn(R(σ+)red).
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Bridge Cohomology
Cyclic bicomplexes

Let σ : A→ A/I be a surjective unital algebra homomorphism, where
I ⊂ A is an ideal. Then the relative Hochschild complex C (A, I ) is defined
as the cokernel

0→ C (A/I )→ C (A)→ C (A, I )→ 0.

With cohomology HH(A, I ).

Jon Belcher (University of Colorado Boulder) Bridge Cohomology
Special Session on Noncommutative Geometry and Fundamental ApplicationsAMS Western Sectional 2018 16

/ 23



Bridge Cohomology
Cyclic bicomplexes

Definition

Let A be a unital algebra and 0→ I → A
σ−→ A/I → 0 be a short exact

sequence of algebras. Define the bridge bicomplex of σ, RR(σ), as the
bicomplex with the following columns

C (A)
q(1−λ)−−−−→ Cbar(A, I )

Q−→ C (A, I )
1−λ−−→ Cbar(A, I )

Q−→ ...

With cohomology given by HRn(σ) := Hn(TotRR(σ)) called the bridge
cohomology of σ.

Proposition

When k contains Q, the total complex of RR(σ) is quasi-isomorphic to the

bridge complex, TotRR(σ)
q∼= R(σ).
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Lemma

For an augmented morphism σ+ : A+ → A+/I ,
HRn(σ) = Hn(TotRRB(σ)), where RRB(σ) is the following tricomplex

C 0(A)

C 0
bar(A)

C 0
bar(A, I )

C 0
bar(A, I )

C 0(A, I )

C 0
bar(A, I )

C 0
bar(A, I )

C 0
bar(A, I )

C 1(A)

C 1
bar(A)

C 1
bar(A, I )

C 1
bar(A, I )

C 1(A, I )

C 1
bar(A, I )

C 1
bar(A, I )

C 1
bar(A, I )

C 2(A)

C 2
bar(A)

C 2
bar(A, I )

C 2
bar(A, I )

C 2(A, I )

C 2
bar(A, I )

C 2
bar(A, I )

C 2
bar(A, I )

b −b′

1− λ

q(1− λ)
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Bridge Cohomology
Gysin-Connes

Theorem (B.,Lesch, Moscovici, Pflaum)

There exists cohomological long exact sequences

· · · → HCn(A, I )
S̃−→ HRn+2(σ)

I−→ HHn+2(A)
B̃−→ HCn+1(A, I )→ . . .

and

· · · → Hn
λ(A)

I−→ HRn(σ)
B−→ Hn−1

λ (A/I )
σ∗◦S−−−→ Hn+1

λ (A/I )→ . . .
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Bridge Cohomology
Relative Bridge Cohomology

Given an exact sequence

0→ σ
(f1,f2)−−−→ τ

(g1,g2)−−−−→ τ/σ → 0

we can define the relative bridge cocomplex, R•(τ, σ), as the cokernel

0→ R•(τ/σ)→ R•(τ)→ R•(τ, σ)→ 0

Jon Belcher (University of Colorado Boulder) Bridge Cohomology
Special Session on Noncommutative Geometry and Fundamental ApplicationsAMS Western Sectional 2018 20

/ 23



Theorem (B.)

(Excision) Let 0→ ρ→ σ → τ → 0 be a copure short exact sequence in
the category Sk, with associated nine diagram

0 0 0

0 I ∩ K K K/I ∩ K 0

0 I A A/I 0

0 I/I ∩ K A/K A/(I + K ) 0

0 0 0

ρ

σ

q1 q2

τ

Then the map R(σ, ρ)→ R(ρ) is a quasi-isomorphism if and only if K and
K/K ∩ I are coH-unital.
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Bridge Cohomology
Future Projects and Applications

Research Goal

Correlate bridge cohomology and de Rham Homology on manifolds with
boundary: (L.,M.,P.) for M compact and

J∞(∂M;M)→ C∞(M)
σ−→ E∞(∂M),

HRk(σ) ∼= B−1(D ′k−1(M; ∂M))⊕ HdR
k−2(M; ∂M)⊕ HdR

k−4(M; ∂M)⊕ ...

Extend the pairings 〈K0(A),HC e(A)〉 and 〈K1(A),HC o(A)〉 from Connes,
to manifolds with boundaries.
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Thank You!
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